Non-layered 2D materials offer unique and more advantageous physicochemical properties than those of conventional 2D layered materials. However, the isotropic chemical bonding nature of non-layered materials hinders their lateral growth, making the synthesis of large-area continuous thin films challenging. Herein, a facile kinetically tailored chemical vapor deposition (KT-CVD) approach is introduced for the synthesis of 2D molybdenum nitride (MoN), a representative non-layered material. Large-scale thin films of MoN with lateral dimensions of up to 1.5 cm × 1.5 cm are obtained by modulating the vapor pressure of nitrogen feedstock and disrupting the thermodynamically favored growth kinetics of non-layered materials. The growth of stable crystalline phases of MoN (δ-MoN and γ-Mo2N) is also realized using the proposed KT-CVD approach. The δ-MoN synthesized via KT-CVD demonstrates excellent surface-enhanced Raman scattering and robust thermal stability. This study provides an effective strategy for developing scalable and high-quality non-layered 2D materials, expanding the fabrication and application of devices based on non-layered materials.
Keywords: chemical vapor deposition; lateral growth; non‐layered 2D materials; transition metal nitride; vapor pressure.
© 2025 Wiley‐VCH GmbH.