Artificial metalloenzymes (ArMs) enable the integration of abiotic cofactors within a native protein scaffold, allowing for non-natural catalytic activities. Previous ArMs, however, have primarily relied on single cofactor systems, limiting them to only one catalytic function. Here we present an approach to construct ArMs embedding two catalytic cofactors based on the biotin-streptavidin technology. By incorporating multiple catalytic cofactors into the four binding sites of streptavidin, we engineered programmable ArMs for tandem abiotic transformations including an enantioselective formal C-H hydroxylation and a photooxidation-Michael addition. This work thus outlines a promising strategy for the development of ArMs embedding multiple cofactors.
Keywords: artificial metalloenzymes; biocatalysis; photoenzymes; tandem transformations.
© 2025 Wiley‐VCH GmbH.