Strategy for Fabricating Degradable Low-Surface-Energy Cross-Linked Networks with Excellent Anti-Fouling Properties

ACS Appl Mater Interfaces. 2025 Jan 6. doi: 10.1021/acsami.4c19192. Online ahead of print.

Abstract

Marine biofouling negatively impacts marine industries and ship navigation. However, current coatings are based on a single antifouling mechanism, which is insufficient to cope with the complex and ever-changing marine environment. Herein, multifunctional antifouling coatings were developed using a material system containing perfluoropolyether and caprolactone chains. First, an acrylic resin containing perfluoropolyether side chains was synthesized as a liquid-repellent component and then a degradable cross-linked network was constructed by bridging polycaprolactone chains. Surprisingly, polycaprolactone chains not only effectively improved the tensile strength but also provided flexibility to the resin. Thus, the coating exhibited satisfactory mechanical stability and low roughness (4.06 nm) during dynamic polishing. It is worth noting that the cross-linked network with a low surface energy (SE) (22.0 mJ·m-2) effectively inhibited the adhesion of marine fouling organisms. Moreover, the hydrolysis of ester groups promoted the formation of a self-renewing surface, and the synergistic effect of the low SE and degradability of the coating ensured excellent and long-lasting antifouling performance of the coating. The coating reduced the adhesions of Vibrio alginolyticus, Nitzschia sp., and Navicula sp. by 99.99, 84.6, and 91.0%, respectively, compared with their adhesions to a commercially available self-polishing coating (B3000). Thus, the degradable low-SE antifouling coating produced using the proposed strategy can be potentially applied to various maritime industries.

Keywords: antifouling; dynamic hydrolysis degradation; low surface energy; mechanical stability; perfluoropolyether.