High-Throughput Dissociation and Orthotopic Implantation of Breast Cancer Patient-Derived Xenografts

J Vis Exp. 2024 Dec 20:(214). doi: 10.3791/67607.

Abstract

Patient-derived xenografts (PDXs) provide a clinically relevant method for recapitulating tumor-involved cell types and the tumor microenvironment, which is essential for advancing knowledge of breast cancer (BC). Additionally, PDX models enable the study of BC systemic effects, which is not possible using in vitro models. Traditional methods for implanting BC xenografts typically involve anesthesia and sterile surgical procedures, which are time-consuming, invasive, and limit the scalability of PDX models in BC research. This protocol describes a simple and scalable method for the orthotopic implantation of BC PDXs in mice. The immunodeficient mouse strain NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) was used for PDX engraftment. Human BC samples obtained from IRB-consented patients were mechanically and enzymatically dissociated, then resuspended in a solution of basement membrane extract (BME) and RPMI 1640. Animals were restrained by scruffing, and depilatory cream was applied to remove hair from the fat pads at the fourth inguinal nipple, followed by injection. Approximately 2 million cells in a 100 µL suspension were bilaterally injected orthotopically into the mammary fat pads using a 26 G needle. Notably, no anesthetic was required, and the total procedure time was under 5 min, from cell preparation to injection. After a growth period of several months, tumors were excised and processed for authentication. Validation included receptor status assessment using immunohistochemistry with specific antibodies for traditional BC receptors (i.e., ER, PR, HER2). Tumor morphology was confirmed with hematoxylin and eosin (H&E) staining, which was interpreted by a pathologist. Genetic similarity to the patient sample was verified through bulk RNA sequencing and short tandem repeat (STR) analysis. This approach to PDX engraftment and validation supports the rigorous development of models and high-throughput tumor implantation, enabling well-powered studies across various BC subtypes.

Publication types

  • Video-Audio Media

MeSH terms

  • Animals
  • Breast Neoplasms* / pathology
  • Breast Neoplasms* / surgery
  • Female
  • Heterografts
  • Humans
  • Mice
  • Mice, Inbred NOD*
  • Neoplasm Transplantation / methods
  • Transplantation, Heterologous / methods