Since the invention and commercialization of poly(p-phenylene benzobisoxazole) (PBO) fibers, numerous breakthroughs in applications have been realized both in the military and aerospace industries, attributed to its superb properties. Particularly, PBO nanofibers (PNFs) not only retain the high performance of PBO fiber but also exhibit impressive nanofeatures and desirable processability, which have been extensively applied in extreme scenarios. However, no review has yet comprehensively summarized the preparation, applications, and prospective challenges of PNFs to the best of our knowledge. Herein, the two fabrication pathways to acquire PNFs from bottom-up to top-down approaches are critically overviewed; the significant advantages and the problem caused simultaneously of the protonation approach compared with other methods are revealed. Besides, the construction strategies of multidimensional PNF-based advanced composites, including 1D fiber, 2D film/nanopaper, and 3D gel, are discussed. Moreover, the outstanding mechanical, insulating, and thermal stability properties of PNFs facilitate their extensive applications in thermal protection, electrical insulation, batteries, and flexible wearable devices, which are further comprehensively introduced. Finally, the perspective and challenges of the fabrication and application of PNFs are highlighted. It demonstrates that the PNFs as one of the promising high-performance nanoscale building blocks can be fully competent using extremely harsh conditions.
Keywords: application; extreme environment; fabrication; flame-retardant; nanofiber; nanomaterials; poly(p-phenylene benzobisoxazole); thermal insulation.