To discover novel inhibitors of pyruvate kinase (PK) as fungicidal candidates, a series of 2-thiazol-2-yl-1,3,4-oxadiazole derivatives were designed by a prediction model with Rhizoctonia solani PK (RsPK) as a protein target and YZK-C22 as a ligand. Fungicidal screening indicated that 5b, 5g, 5h, 5j, 5l, 5p, 5q, and 5s exhibited equal or higher activity compared to YZK-C22 against Botrytis cinerea, Cercospora arachidicola, or R. solani. To our surprise, 5s showed comparable activity to flutriafol with an EC50 of 0.21 μg/mL vs 0.20 μg/mL, but over 14 times more active than the lead compound YZK-C22 against R. solani with its EC50 of 0.21 μg/mL vs 3.14 μg/mL (mole ratio over 17-fold). Compound 5s also displayed 2.30-fold better inhibition potency against RsPK compared with YZK-C22. Moreover, this higher potency of 5s against RsPK was also reflected in a steeper dose-response tendency in the fluorescence quenching assay and a lower dissociation constant in the microscale thermophoresis (MST) assay when compared with YZK-C22. The results in this study not only broadened the structural diversity of PK inhibitors but also supported 5s as a promising PK-based highly active fungicide lead compound, with stronger binding ability to RsPK than YZK-C22.
Keywords: 2-thiazol-2-yl-1,3,4-oxadiazole; fungicidal activity; molecular docking; pyruvate kinase.