Fibrillation of the amyloid beta (Aβ) peptide has often been associated with neurodegenerative pathologies such as Alzheimer's disease. In this study we examined the influence of several potential compositions of the lipid membrane on Aβ fibrillation by using liposomes as a basic model membrane. Firstly, it was revealed that Aβ fibrillation kinetics were enhanced and had the potential to occur at a faster rate on more fluid membranes compared to solid membranes. Next, the extent of fibril-related damage to membranes was examined with analysis of membrane polarity via the steady-state emission spectra of 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan). It was revealed that there was slight hydration behavior of the membrane during the lag phase (tlag) of the kinetic process, possibly coinciding with Aβ monomer binding. However, as the fibrillation kinetic process continued the membrane gradually dehydrated. Hydration states of membranes during and after Aβ fibrillation processes were further examined via deconvolution analysis of the obtained Laurdan spectra. This allows a mapping of membrane hydration from the interior to exterior regions of the lipid membrane. Results revealed slight but definitive variations in deeper region membrane polarity during the time course of Aβ fibrillation, suggesting Aβ aggregation impacts not only the surface level aggregating region but also the inner regions of the membrane. These results can ultimately contribute to the future investigations of the nature of the membrane damage caused by Aβ aggregation.
Keywords: Amyloid-β; Brain; Fibrillation; Generalized Polarity; Laurdan; Neuron; Polarity.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.