Synonymous mutations, once considered neutral, are now understood to have significant implications for a variety of diseases, particularly cancer. It is indispensable to identify these driver synonymous mutations in human cancers, yet current methods are constrained by data limitations. In this study, we initially investigate the impact of sequence-based features, including DNA shape, physicochemical properties and one-hot encoding of nucleotides, and deep learning-derived features from pre-trained chemical molecule language models based on BERT. Subsequently, we propose EPEL, an effect predictor for synonymous mutations employing ensemble learning. EPEL combines five tree-based models and optimizes feature selection to enhance predictive accuracy. Notably, the incorporation of DNA shape features and deep learning-derived features from chemical molecule represents a pioneering effect in assessing the impact of synonymous mutations in cancer. Compared to existing state-of-the-art methods, EPEL demonstrates superior performance on independent test datasets. Furthermore, our analysis reveals a significant correlation between effect scores and patient outcomes across various cancer types. Interestingly, while deep learning methods have shown promise in other fields, their DNA sequence representations do not significantly enhance the identification of driver synonymous mutations in this study. Overall, we anticipate that EPEL will facilitate researchers to more precisely target driver synonymous mutations. EPEL is designed with flexibility, allowing users to retrain the prediction model and generate effect scores for synonymous mutations in human cancers. A user-friendly web server for EPEL is available at http://ahmu.EPEL.bio/.
Copyright: © 2025 Bi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.