Idesia polycarpa Maxim (IPM) cake meal, a major by-product of oil extraction, is often discarded in large quantities, resulting in considerable waste. This study explored the extraction of IPM polysaccharides (IPMPs) from cake meal using the innovative ultrasonic-assisted three-phase partitioning (UTPP) method, in comparison with conventional techniques, including acid, medium-temperature alkali, chelating agent, and enzyme extraction methods. The IPMP-UT prepared via UTPP method achieved superior extraction efficiency (10.05 %), increased uronic acid content (39.12 %), and a greater proportion of the rhamnogalacturonan I (RG-I) domain (42.88 %), along with improved homogeneity (Mw/Mn: 2.79) and enhanced functional properties, including improved thermal stability, emulsion ability, and emulsion stability. Compared to IPMPs extracted via conventional methods, emulsions stabilized with IPMP-UT exhibited superior performance across different pH levels and polysaccharide concentrations. At pH 6.0, IPMP-UT emulsion formed thicker interfacial layers and exhibited the strongest storage (G') and loss (G″) module. Bioactivity assays further revealed that IPMP-UT had the most potent in vitro inhibition of α-glucosidase and was the most effective at reducing the formation of fructosamine, α-dicarbonyl compounds, and advanced glycation end products (AGEs). All IPMPs inhibited α-glucosidase through a combined mechanism, primarily reducing fluorescence via static quenching, with IPMP-UT demonstrating the greatest binding affinity. Fluorescence and FT-IR spectroscopy confirmed that IPMPs induced structural rearrangements in the enzyme. In conclusion, the UTPP method emerged as the most promising and environmentally sustainable technique for producing pectic polysaccharides with optimal functional properties from IPM cake meal.
Keywords: Biological activity; Emulsifying property; Extraction method; Idesia polycarpa Maxim; Physicochemical characteristic; Polysaccharides.
Copyright © 2025 Elsevier Ltd. All rights reserved.