Interactions between lncRNAs and cyclins/CDKs complexes; key players in determining cancer cell response to CDKs inhibitors

Exp Cell Res. 2025 Jan 4:114406. doi: 10.1016/j.yexcr.2025.114406. Online ahead of print.

Abstract

Transcription takes place over a significant portion of the human genome. However, only a small portion of the transcriptome, roughly 1.2%, consists of RNAs translated into proteins; the majority of transcripts, on the other hand, comprise a variety of RNA families with varying sizes and functions. A substantial portion of this diverse RNA universe consists of sequences longer than 200 bases, called the long non-coding RNA (lncRNA). The control of gene transcription, changes to DNA topology, nucleosome organization and structure, paraspeckle creation, and assistance for developing cellular organelles are only a few of the numerous tasks performed by lncRNA. The main focus of this study is on the function of lncRNA in controlling the levels and actions of cyclin-dependent kinase inhibitors (CDKIs). The enzymes required for the mitotic cycle's regulated progression are called cyclin-dependent kinases (CDKs). They have many degrees of regulation over their activities and interact with CDKIs as their crucial mechanisms. Interestingly, culminating evidence has clarified that lncRNAs are associated with several illnesses and use CDKI regulation to control cellular function. Nonetheless, despite the abundance of solid evidence in the literature, it still seems unlikely that lncRNA will have much of an impact on controlling cell proliferation or modulating CDKIs.

Keywords: CDKs; Cancer; Cell growth; Cyclins; LncRNA.

Publication types

  • Review