Characterization and Correlation Analysis of Bacterial Composition and Physicochemical Quality in High- and Medium-Temperature Daqu from China's Binzhou Region

Curr Microbiol. 2025 Jan 6;82(2):72. doi: 10.1007/s00284-024-04037-5.

Abstract

To investigate the bacterial community structure and physicochemical characteristics of different types of Daqu in the Binzhou region, this study employed traditional pure culture methods, high-throughput sequencing technology, and conventional physicochemical assays for analysis. The research results indicate that Enterococcus faecium and Bacillus licheniformis emerged as the main LAB and Bacillus species in Daqu from Binzhou region, respectively. In addition, high-throughput sequencing revealed significant differences in bacterial community structure between the two types of Daqu (P < 0.01). Compostibacillus and Sebaldella were identified as the biomarkers and potential key strains of high- and medium-temperature Daqu, respectively, and high-temperature Daqu demonstrated higher microbial complexity and stability than medium-temperature Daqu. Physicochemical assays demonstrated that the a* value, Daqu skin hardness, Daqu core hardness, density, starch content, and aminophenol content being significantly higher in high-temperature Daqu (P < 0.05), meanwhile, the L* value, water activity, water content, protein content, liquefaction power, and saccharification power were found to be significantly lower in high-temperature Daqu (P < 0.05). And there was significant association between dominant genera and the physicochemical indexes of Daqu (P = 0.001). It can thus be seen that there were significant differences between the microbial communities and physicochemical indicators of different types of Daqu in the Binzhou region. The results of this study are of great significance for further analyzing the differences between different types of Daqu and improving their quality.

MeSH terms

  • Bacteria* / classification
  • Bacteria* / genetics
  • Bacteria* / isolation & purification
  • Chemical Phenomena
  • China
  • High-Throughput Nucleotide Sequencing
  • Microbiota
  • Soil Microbiology
  • Temperature