Cerebral vascular deposition of the amyloid-β (Aβ) peptide, a condition known as cerebral amyloid angiopathy (CAA), is associated with intracerebral hemorrhaging and contributes to disease progression in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID). Familial mutations at positions 22 and 23 within the Aβ peptide lead to early onset and severe CAA pathology. Here, we evaluate the effects of fibrillar Aβ peptides on the viability of primary-cultured human cerebral smooth muscle (HCSM) cells, which are the major site of amyloid deposition in cerebral blood vessel walls. Comparisons are made of the familial E22Q (Dutch) mutant of Aβ40 with wild-type Aβ40 and Aβ42. In agreement with previous studies, we find that there is a significant reduction in cell viability when Aβ40-Dutch or Aβ42-WT peptides are added to HCSM cell cultures as monomeric Aβ, whereas Aβ40-WT is relatively nontoxic. The binding of Aβ fibrils derived from sporadic CAA or familial Dutch-type CAA brain tissue to the membrane surface of HCSM cells does not result in a significant loss of cell viability. In contrast, when Aβ40-WT monomers and sporadic CAA fibrils are coincubated in HCSM cell cultures, there is a significant reduction in HCSM cell viability that is accompanied by an increase in cell surface fibril formation. Lastly, intrathecal administration of Aβ40-Dutch fibrillar seeds promotes fibrillar amyloid accumulation in the smooth muscle of meningeal vessels in the rTg-D transgenic rat model of CAA. Together, the present findings suggest that fibrillar Aβ seeds propagate the expansion of new amyloid fibrils on cerebral vascular smooth muscle, leading to membrane disruption and cell death.