A Commander-independent function of COMMD3 in endosomal trafficking

bioRxiv [Preprint]. 2024 Dec 17:2024.12.12.628173. doi: 10.1101/2024.12.12.628173.

Abstract

Endosomal recycling is a branch of intracellular membrane trafficking that retrieves endocytosed cargo proteins from early and late endosomes to prevent their degradation in lysosomes. A key player in endosomal recycling is the Commander complex, a 16-subunit protein assembly that cooperates with other endosomal factors to recruit cargo proteins and facilitate the formation of tubulo-vesicular carriers. While the crucial role of Commander in endosomal recycling is well established, its molecular mechanism remains poorly understood. Here, we genetically dissected the Commander complex using unbiased genetic screens and comparative targeted mutations. Unexpectedly, our findings revealed a Commander-independent function for COMMD3, a subunit of the Commander complex, in endosomal recycling. COMMD3 regulates a subset of cargo proteins independently of the other Commander subunits. The Commander-independent function of COMMD3 is mediated by its N-terminal domain (NTD), which binds and stabilizes ADP- ribosylation factor 1 (ARF1), a small GTPase regulating endosomal recycling. Mutations disrupting the COMMD3-ARF1 interaction diminish ARF1 expression and impair COMMD3- dependent cargo recycling. These data provide direct evidence that Commander subunits can function outside the holo-complex and raise the intriguing possibility that components of other membrane trafficking complexes may also possess functions beyond their respective complexes.

Publication types

  • Preprint