The losses of reactive gaseous nitrogen (N), including ammonia (NH3) and nitrous oxide (N2O), represent a pressing environmental issue during composting. However, the impact of hydrothermal carbonization aqueous phase (HAP) on compost gaseous N emissions and the underlying mechanisms remain largely unexplored. Herein, Quercus acutissima leaves-derived HAP and its modified HAP (MHAP) were added to the chicken manure compost at 5 % (w/w) and 10 % (w/w) applied rates to observe changes in NH3 and N2O fluxes, compost properties and bacterial communities. Results showed that high application of HAP significantly decreased compost cumulative NH3 volatilization by 23-26 % compared to the control and MHAP. Compost NH3 and N2O emissions were significantly influenced by compost temperature and inorganic N concentrations. Moreover, HAP and MHAP at high rates reduced the relative abundance of Bacteroidota (5-29 %) and Proteobacteria (11-35 %), compared to those at low rates. Compost environmental factors and bacterial diversity were identified as dominant factors affecting gaseous N emissions, with 54 % and 25 % explanatory rates, respectively. Furthermore, high application rates of HAP are expected to reduce annual NH3 emissions from poultry manure compost by 40000 t. These findings provide insights into rational resource utilization of HAP and gaseous N emission reduction from composting.
Keywords: Compost fertility; Gaseous nitrogen emission; HAP; Microbial community; Poultry manure.
Copyright © 2025 Elsevier B.V. All rights reserved.