Cisplatin (CIS) is a widely used chemotherapeutic agent, but its side effects, such as oxidative stress, inflammation, and apoptosis, often lead to male reproductive damage. Oxidative stress, primarily caused by the excessive generation of reactive oxygen species (ROS), plays a critical role in disrupting testicular homeostasis, resulting in spermatogenic impairment and tissue injury. L-cysteine (CYS), a semi-essential amino acid with potent antioxidant and anti-inflammatory properties, may offer protection against CIS-induced oxidative damage. This study aimed to assess the protective potential of CYS against CIS-induced male reproductive toxicity using in vivo and in vitro models. In vitro, treatment of TM3 (Leydig) and TM4 (Sertoli) cells with CIS led to increased ROS levels, reduced cell viability, and elevated apoptosis and inflammation, all of which were significantly ameliorated by subsequent CYS exposure. In vivo, CIS-treated male rats displayed heightened oxidative stress, impaired spermatogenesis, and histopathological damage in reproductive organs. However, CYS administration for 21 days significantly reduced oxidative stress, improved sperm viability, and protected testicular tissues from damage. These findings suggest that CYS has a protective effect against CIS-induced oxidative stress and male reproductive damage, making it a promising therapeutic agent for mitigating CIS-induced reproductive toxicity.
Keywords: L-cysteine; cisplatin; male reproductive damage; oxidative stress.