Osteocyte senescence is associated with skeletal dysfunction, but how to prevent bone loss and find the effective therapeutic targets is a potential scientific concern. Cadmium (Cd) is a widespread environmental contaminant that causes substantial bone damage in both animals and humans. Oligomeric proanthocyanidins (OPC) are naturally polyphenolic substances found in various plants and demonstrate significant anti-senescence potential. Here, we investigated the protective effects of OPC against Cd-induced senescence of osteocytes and identify potential regulatory mechanisms. OPC alleviated Cd-induced senescence of osteocytes by attenuating cell cycle arrest, reducing ROS accumulation, and suppressing pro-inflammatory responses in vitro. Furthermore, OPC effectively prevented the Cd-induced breakdown of dendritic synapses in osteocytes in vitro. Correspondingly, OPC ameliorated Cd-induced damage of osteocytes through anti-senescence activity in vivo. Taken together, our results establish OPC as a promising therapeutic agent that ameliorates Cd-induced osteocyte senescence by mitigating oxidative stress and inflammatory responses.
Keywords: cadmium (Cd); inflammation; oligomeric proanthocyanidins (OPC); osteocytes; oxidative stress; senescence.