Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects over 1% of population over age 60. It is defined by motor and nonmotor symptoms including a spectrum of cognitive impairments known as Parkinson's disease dementia (PDD). Currently, the only US Food and Drug Administration-approved treatment for PDD is rivastigmine, which inhibits acetylcholinesterase and butyrylcholinesterase increasing the level of acetylcholine in the brain. Due to its limited efficacy and side effect profile, rivastigmine is often not prescribed, leaving patients with no treatment options. PD has several derangements in neurotransmitter pathways (dopaminergic neurons in the nigrostriatal pathway, kynurenine pathway (KP), acetylcholine, α7 nicotinic receptor, and N-methyl-D-aspartate (NMDA) receptors) and rivastigmine is only partially effective as it only targets one pathway. Kynurenic acid (KYNA), a metabolite of tryptophan metabolism, affects the pathophysiology of PDD in multiple ways. Both galantamine (α7 nicotinic receptor) and memantine (antagonist of the NMDA subtype of the glutamate receptor) are KYNA modulators. When used in combination, they target multiple pathways. While randomized controlled trials (RCTs) with each drug alone for PD have failed, the combination of galantamine and memantine has demonstrated a synergistic effect on cognitive enhancement in animal models. It has therapeutic potential that has not been adequately assessed, warranting future randomized controlled trials. In this review, we summarize the KYNA-centric model for PD pathophysiology and discuss how this treatment combination is promising in improving cognitive function in patients with PDD through its action on KYNA.
Keywords: N-acetylcysteine; Parkinson’s disease dementia; Parkinson’s disease treatment; cognition; drug combination; galantamine; kynurenic acid; memantine; neuropharmacology.