Breast Tumor Detection and Diagnosis Using an Improved Faster R-CNN in DCE-MRI

Bioengineering (Basel). 2024 Dec 1;11(12):1217. doi: 10.3390/bioengineering11121217.

Abstract

AI-based breast cancer detection can improve the sensitivity and specificity of detection, especially for small lesions, which has clinical value in realizing early detection and treatment so as to reduce mortality. The two-stage detection network performs well; however, it adopts an imprecise ROI during classification, which can easily include surrounding tumor tissues. Additionally, fuzzy noise is a significant contributor to false positives. We adopted Faster RCNN as the architecture, introduced ROI aligning to minimize quantization errors and feature pyramid network (FPN) to extract different resolution features, added a bounding box quadratic regression feature map extraction network and three convolutional layers to reduce interference from tumor surrounding information, and extracted more accurate and deeper feature maps. Our approach outperformed Faster R-CNN, Mask R-CNN, and YOLOv9 in breast cancer detection across 485 internal cases. We achieved superior performance in mAP, sensitivity, and false positive rate ((0.752, 0.950, 0.133) vs. (0.711, 0.950, 0.200) vs. (0.718, 0.880, 0.120) vs. (0.658, 0.680, 405)), which represents a 38.5% reduction in false positives compared to manual detection. Additionally, in a public dataset of 220 cases, our model also demonstrated the best performance. It showed improved sensitivity and specificity, effectively assisting doctors in diagnosing cancer.

Keywords: AI assistant; breast cancer detection; deep learning.