Cellular mechanical properties are critical for tissue and organ homeostasis, which are associated with many diseases and are very promising non-labeled biomarkers. Over the past two decades, many research tools based on microfluidic methods have been developed to measure the biophysical properties of single cells; however, it has still not been possible to develop a technique that allows for high-throughput, easy-to-operate and precise measurements of single-cell biophysical properties. In this paper, we review the emerging technologies implemented based on microfluidic approaches for characterizing the mechanical properties of single cells and discuss the methodological principles, advantages, limitations, and applications of various technologies.
Keywords: cell mechanical properties; microfluidics; single-cell mechanics.