The study investigated the application of humic acids (HAs) and a combination of humic acids and amino acids (HA+AA) in maize under field conditions. Based on preliminary data in the literature, the aim was to investigate the effects of the two plant conditioning compounds on plant physiological parameters. In addition to measuring plant physiological parameters in the field, a complete transcriptome analysis was performed to determine exactly which genes were expressed after the treatments and in which physiological processes they play a role. Maize plants showed significant positive yield changes after two priming treatments. Genome-wide transcriptomic analysis revealed the activation of photosynthetic and cellular respiration processes, as well as protein synthesis pathways, which explains the increased yield even under extreme precipitation conditions. The results show that the HA treatment helped in water management and increased the chlorophyll content, while the HA+AA treatment led to higher protein and dry matter contents. The post-harvest tests also show that the HA+AA treatment resulted in the highest yield parameters. Functional annotation of the maize super transcriptome revealed genes related to translation processes, photosynthesis, and cellular respiration. The combined pathway analysis showed that the HA and combined treatments activated genes related to photosynthesis, carbon fixation, and cellular respiration, providing valuable in-depth insight into the usefulness of the HA and HA+AA treatments in priming. Based on the studies, we believe that the use of natural-based humic acid plant conditioners may provide a beneficial opportunity to promote renewable, regenerative agriculture.
Keywords: bioactive humic acid and amino acid compounds; carbon fixation; cellular respiration; content characteristics; mRNA sequencing; next-generation sequencing (NGS); oxidative phosphorylation; photosynthesis; priming; yield parameters.