The anti-cancer potential of eugenol (EUG) is well recognized, whereas that of spermidine (SPD) is subject to dispute and requires further research. The anti-tumorigenic potential of wheat germ SPD (150 µM) and clove EUG (100 µM), alone, in combination as SPD+EUG (50 µM + 100 µM) and, as a supplement (SUPPL; 0.6 µM SPD + 50 µM EUG), was investigated on both metastatic SW620 and primary Caco-2 colorectal cancer (CRC) spheroids. Compared to untreated controls, all treatments significantly reduced the vitality and spheroid area, increased the necrotic area, and induced apoptosis on both cell-type spheroids after 96 h, with a reduced migration evident in 2D (two-dimensional) cultures after 48 h. The comparable anti-CRC effects of the SPD+EUG and the SUPPL reflected a wide-range dose efficacy of SPD and EUG. It is of note that SPD+EUG induced a synergistic effect on the increased caspase-3 expression and reduced the migration percentage in SW620. In more physiologically relevant intestinal equivalents (healthy enterocytes [NCM460], fibroblasts [L929], and monocytes [U937]) containing embedded SW620/Caco-2 spheroids, SPD+EUG administration significantly reduced the spheroid CEA marker and proliferation, whilst simultaneously increasing occludin, autophagy LC3-II expression, and monocyte differentiation, compared to the control models. Exogenous SPD, alone and in combination with EUG, displayed an anti-CRC potential on tumor growth and metastasis, and warrants further investigation.
Keywords: Caco-2 spheroids; SW620; anti-tumorigenic efficacy; apoptosis; co-culture intestinal equivalents; eugenol; migration; spermidine.