Orius nagaii is a highly effective natural enemy for controlling thrips, tetranychids, aphids, and various Lepidoptera pests. Nevertheless, the molecular mechanisms underlying its interactions with host pests remain unclear. Screening for optimal reference genes is a prerequisite for using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to investigate the interrelationship. Here, ten commonly used reference genes (Act, GAPDH, β-Tub, EF1-α, RPS10, RPS15, RPL6, RPL13, RPL32, and HSP90) were selected, and their expression stability across developmental stages, tissues, temperatures, and host conditions were evaluated using RefFinder, which uses multiple analytical approaches (NormFinder, geNorm, the ΔCt method, and BestKeeper). The findings suggested that the most reliable normalization can be achieved by selecting the two reference genes for all conditions, with the optimal pairs being RPS10 and RPL32 for the developmental stage, RPS10 and RPS15 for tissue, RPS10 and RPS15 for the host, and EF1-α and RPL13 for temperature. Also, the best and least stable reference genes were chosen to compare the relative transcript levels of the TBX1 in various tissues, which exhibited considerable variation. Our findings will significantly enhance the reliability of RT-qPCR and provide a foundation for further research on the expression patterns of crucial genes that are implicated in the interaction between O. nagaii and its host pests.
Keywords: Orius nagaii; RT-qPCR; reference gene; selection; validation.