Fine Tuning the Glass Transition Temperature and Crystallinity by Varying the Thiophene-Quinoxaline Copolymer Composition

Materials (Basel). 2024 Dec 10;17(24):6031. doi: 10.3390/ma17246031.

Abstract

In recent years, the design and synthesis of high-performing conjugated materials for the application in organic photovoltaics (OPVs) have achieved lab-scale devices with high power conversion efficiency. However, most of the high-performing materials are still synthesised using complex multistep procedures, resulting in high cost. For the upscaling of OPVs, it is also important to focus on conjugated polymers that can be made via fewer simple synthetic steps. Therefore, an easily synthesised amorphous thiophene-quinoxaline donor polymer, TQ1, has attracted our attention. An analogue, TQ-EH that has the same polymer backbone as TQ1 but with short branched side-chains, was previously reported as a donor polymer with increased crystallinity. We have synthesised copolymers with varied ratios between octyloxy and branched (2-ethylhexyl)oxy-substituted quinoxaline units having the same polymer backbone, with the aim to control the aggregation/crystallisation behaviour of the resulting copolymers. The optical properties, glass transition temperatures and degree of crystallinity of the new copolymers were systematically examined in relation to their copolymer composition, revealing that the composition can be used to fine-tune these properties of conjugated polymers. In addition, multiple sub-Tg transitions were found from some of the polymers, which are not commonly or clearly seen in other conjugated polymers. The new copolymers were tested in photovoltaic devices with a fullerene derivative as the acceptor, achieving slightly higher performances compared to the homopolymers. This work demonstrates that side-chain modification by copolymerisation can fine-tune the properties of conjugated polymers without requiring complex organic synthesis, thereby expanding the number of easily synthesised polymers for future upscaling of OPVs.

Keywords: conjugated polymers; copolymer composition; crystallinity; glass transition temperatures; organic photovoltaics; side-chain modification.