Fano and Electromagnetically Induced Transparency Resonances in Dual Side-Coupled Photonic Crystal Nanobeam Cavities

Materials (Basel). 2024 Dec 19;17(24):6213. doi: 10.3390/ma17246213.

Abstract

We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are π and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method. The simulation results show that the proposed structure can achieve several kinds of spectra, including Fano, EIT and asymmetric EIT line shapes, which is dependent on the width of the bus waveguide. Compared to the previously proposed Fano resonator with 1D PCNCs, the proposed structures have the advantages of high transmission at the resonant peak, low insertion loss at non-resonant wavelengths, a wide free spectral range (FSR) and a high roll-off rate. Therefore, we believe the proposed structure can find broad applications in optical switches, modulators and sensors.

Keywords: EIT resonance; Fano resonance; nanobeam cavity.