Gold nanoparticles (Au NPs) are a promising target for research due to their small size and the resulting plasmonic properties, which depend, among other things, on the chosen reducer. This is important because removing excess substrate from the reaction mixture is problematic. However, Au NPs are an excellent component of various materials, enriching them with their unique features. One example is hydrogels, which provide a good, easily modifiable base for multiple applications such as cosmetics. For this purpose, various compounds, including hyaluronic acid (HA) and its derivatives, are distinguished by their high water-binding capacity and many characteristics resulting from their natural origin in organisms, including biocompatibility, biodegradability, and tissue regeneration. In this work Au NPs were synthesized using a green chemistry method, either by using onion extract as a reductant or chemically reducing them with sodium citrate. A complete characterization of the nanoparticles was carried out using the following methods: Fourier-Transform Infrared Spectroscopy (FT-IR), Electrophoretic (ELS), and Dynamic Light Scattering (DLS) as well as Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM). Their antioxidant activity was also tested using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). The results showed that the synthesized nanoparticles enrich the hydrogels with antioxidant properties and new surface properties (depending on the reducing agent, they can be more hydrophilic or hydrophobic). Preliminary observations indicated low cytotoxicity of the nanomaterials in both liquid form and as a hydrogel component, as well as their lack of penetration through pig skin. The cosmetic properties of hydrogel masks were also confirmed, such as increasing skin hydration.
Keywords: biological membranes; hyaluronic acid; hydrogel masks; nanogold; permeability; pig skin.