Vector bending sensors can be utilized to detect the bending curvature and direction, which is essential for various applications such as structural health monitoring, mechanical deformation measurement, and shape sensing. In this work, we demonstrate a temperature-insensitive vector bending sensor via parallel Farby-Perot interferometers (FPIs) fabricated by etching and splicing a multicore fiber (MCF). The parallel FPIs made in this simple and effective way exhibit significant interferometric visibility with a fringe contrast over 20 dB in the reflection spectra, which is 6 dB larger than the previous MCF-based FPIs. And such a device exhibits a curvature sensitivity of 0.207 nm/m-1 with strong bending-direction discrimination. The curvature magnitude and orientation angle can be reconstructed through the dip wavelength shifts in two off-diagonal outer-core FPIs. The reconstruction results of nine randomly selected pairs of bending magnitudes and directions show that the average relative error of magnitude is ~4.5%, and the average absolute error of orientation angle is less than 2.0°. Furthermore, the proposed bending sensor is temperature-insensitive, with temperature at a lower sensitivity than 10 pm/°C. The fabrication simplicity, high interferometric visibility, compactness, and temperature insensitivity of the device may accelerate MCF-based FPI applications.
Keywords: Fabry–Perot interferometer; Multicore fiber; vector bending sensor.