The effects of different doses (10-100 kGy) of electron beams on the molecular structure, microstructure, and thermoelectric properties of polypyrrole (PPy) under high-energy electron beam irradiation (10 MeV) were studied. The results showed that after electron beam irradiation, the conductivity of PPy increased slightly, but the Seebeck coefficient and power factor remained relatively stable. The structural analysis of FTIR, Raman spectroscopy, and X-ray diffraction indicated that the molecular structure of PPy was strongly stable, and its microstructure was only slightly affected by electron beam irradiation. Within different dose ranges, the particle size of PPy remained unchanged, indicating that PPy has outstanding radiation resistance performance.
Keywords: conducting polymer; electron beam irradiation; polypyrrole; radiation resistance; thermoelectric materials.