Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear optical modalities, including second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), combined with fluorescence lifetime imaging microscopy (FLIM), offer a promising non-destructive diagnostic method for evaluating lignocellulose-based materials. In this study, we employed a nonlinear multimodal approach to examine the effects of artificially induced delignification on samples of Norway spruce (Picea abies) and European beech (Fagus sylvatica) subjected to increasing treatment durations. The integration of SHG/TPEF imaging and multi-component fluorescence lifetime analysis enabled the detection of localized variations in nonlinear signals and τ-phase of key biopolymers within wood cell walls. This methodology provides a powerful tool for early detection of wood deterioration, facilitating proactive conservation efforts of wooden artefacts.
Keywords: cellulose; delignification; fluorescence lifetime imaging microscopy (FLIM); hemicellulose; lignin; second harmonic generation (SHG); two-photon excited fluorescence (TPEF); wood deterioration.