Polycystic ovary syndrome (PCOS) is the predominant endocrine disorder among women of reproductive age and represents the leading cause of anovulatory infertility, which imposes a considerable health and economic burden. Currently, medications used to treat PCOS can lead to certain adverse reactions, such as affecting fertility and increasing the risk of venous thrombosis. Drug delivery systems utilizing nanomaterials, characterized by prolonged half-life, precision-targeted delivery, enhanced bioavailability, and reduced toxicity, are currently being employed in the management of PCOS. This innovative approach is gaining traction as a favored strategy for augmenting the therapeutic efficacy of medications. Consequently, this paper discusses the roles of nanoparticles, nanocarriers, and targeted ligands within nanomaterial-based drug delivery systems, aiming to identify optimal methodologies for treating PCOS using nanomaterials. Additionally, prospective research avenues concerning nanomaterial-based delivery systems in the context of PCOS, as well as the implications of existing insights on the advancement of novel therapies for PCOS, are highlighted.
Keywords: nanoparticles; novel drug delivery systems; polycystic ovary syndrome; therapeutic efficacy.