Enhanced Intrusion Detection for ICS Using MS1DCNN and Transformer to Tackle Data Imbalance

Sensors (Basel). 2024 Dec 10;24(24):7883. doi: 10.3390/s24247883.

Abstract

With the escalating threat posed by network intrusions, the development of efficient intrusion detection systems (IDSs) has become imperative. This study focuses on improving detection performance in programmable logic controller (PLC) network security while addressing challenges related to data imbalance and long-tail distributions. A dataset containing five types of attacks targeting programmable logic controllers (PLCs) in industrial control systems (ICS) was first constructed. To address class imbalance and challenges posed by complex network traffic, Synthetic Minority Oversampling Technique (SMOTE) and Borderline-SMOTE were applied to oversample minority classes, thereby enhancing their diversity. This paper proposes a dual-channel feature extraction model that integrates a multi-scale one-dimensional convolutional neural network (MS1DCNN) and a Weight-Dropped Transformer (WDTransformer) for IDS. The MS1DCNN is designed to extract fine-grained temporal features from packet-level data, whereas the WDTransformer leverages self-attention mechanisms to capture long-range dependencies and incorporates regularization techniques to mitigate overfitting. To further enhance performance on long-tail distributions, a custom combined loss function was developed by integrating cross-entropy loss and focal loss to reduce misclassification in minority classes. Experimental validation on the constructed dataset demonstrated that the proposed model achieved an accuracy of 95.11% and an F1 score of 95.12%, significantly outperforming traditional machine learning and deep learning models.

Keywords: data imbalance; industrial control security; intrusion detection; network security.