Nuclear power plant decommissioning requires the rapid and accurate classification of radioactive waste in narrow spaces and under time constraints. Photon-counting detector technology offers an effective solution for the quick classification and detection of radioactive hotspots in a decommissioning environment. This paper characterizes a 5 mm CdTe Timepix3 detector and evaluates its feasibility as a single-layer Compton camera. The sensor's electron mobility-lifetime product and resistivity are studied across bias voltages ranging from -100 V to -3000 V, obtaining values of μeτe = (1.2 ± 0.1) × 10-3 cm2V-1, and two linear regions with resistivities of ρI=(5.8±0.2) GΩ cm and ρII=(4.1±0.1) GΩ cm. Additionally, two calibration methodologies are assessed to determine the most suitable for Compton applications, achieving an energy resolution of 16.3 keV for the 137Cs photopeak. The electron's drift time in the sensor is estimated to be (122.3 ± 7.4) ns using cosmic muons. Finally, a Compton reconstruction of two simultaneous point-like sources is performed, demonstrating the detector's capability to accurately locate radiation hotspots with a ∼51 cm resolution.
Keywords: Compton camera; Timepix; cadmium telluride; photon-counting detectors; semiconductors.