Corrosion damage presents significant challenges to the safety and reliability of connected vehicles. However, traditional non-destructive methods often fall short when applied to complex automotive structures, such as bolted lap joints. To address this limitation, this study introduces a novel corrosion monitoring approach using Lamb wave-based weighted fusion imaging methods. First, the Minimum Variance Distortionless Response (MVDR) is utilized to process Lamb wave signals collected under bolt-loosening and bolt-tightening conditions to image the bolt locations. Second, based on the identified bolt positions, the weighted Reconstruction Algorithm for Probabilistic Inspection of Damage (RAPID) is applied to the Lamb wave signals acquired before and after corrosion, enabling precise imaging of the actual positions of the corroded bolts. Experiments are conducted on three-bolt lap joints in cases of single-corrosion and two-corrosion using A0 mode Lamb waves and piezoelectric sensor networks. The results demonstrate that the proposed method effectively images multiple types of damage and achieves maximum location deviations of 7.43 mm. This approach enables precise and visual multi-damage assessment, particularly in hard-to-access regions. When integrated with V2X-enabled (Vehicle-to-Everything) systems, the method offers potential for incorporation into automotive structural health monitoring systems for remote diagnosis in complex structures, thereby enhancing monitoring efficiency and accuracy.
Keywords: Lamb wave; automotive lap joint; corrosion monitoring; damage imaging method; piezoelectric sensor networks.