Lattice-guided growth of dense arrays of aligned transition metal dichalcogenide nanoribbons with high catalytic reactivity

Sci Adv. 2025 Jan 10;11(2):eadr8046. doi: 10.1126/sciadv.adr8046. Epub 2025 Jan 8.

Abstract

Transition metal dichalcogenides (TMDs) exhibit unique properties and potential applications when reduced to one-dimensional (1D) nanoribbons (NRs), owing to quantum confinement and high edge densities. However, effective growth methods for self-aligned TMD NRs are still lacking. We demonstrate a versatile approach for lattice-guided growth of dense, aligned MoS2 NR arrays via chemical vapor deposition (CVD) on anisotropic sapphire substrates, without tailored surface steps. This method enables the synthesis of NRs with widths below 10 nanometers and longitudinal axis parallel to the zigzag direction, being also extensible to the growth of WS2 NRs and MoS2-WS2 heteronanoribbons. Growth is influenced by both substrate and CVD temperature, indicating the role of anisotropic precursor diffusion and substrate interaction. The 1D nature of the NRs was asserted by the observation of Coulomb blockade at low temperatures. Pronounced catalytic activity was observed at the edges of the NRs, indicating their promise for efficient catalysis.