Escalation of genome defense capacity enables control of an expanding meiotic driver

Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2418541122. doi: 10.1073/pnas.2418541122. Epub 2025 Jan 7.

Abstract

From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases. Such a binary architecture allows the defense systems to be readily adaptable, where new targets can be captured via innovation of specificity factors. Thus, our current understanding of genome defense against lineage-specific selfish genes has been largely limited to specificity factor innovations, while it remains poorly understood whether other types of innovations are required. Here, we describe a new type of innovation, which escalates the genome defense capacity to control a recently expanded selfish gene in Drosophila melanogaster. Through a targeted RNAi screen for repressors of Stellate-a recently evolved meiotic driver-we identified a defense factor, Trailblazer. Trailblazer is a transcription factor that promotes the expression of two PIWI-clade nucleases, Aub and AGO3, to match Stellate in abundance. Recent innovation in the DNA-binding domain of Trailblazer enabled it to elevate Aub and AGO3 expression, thereby escalating the silencing capacity of piRNA pathway to tame expanded Stellate and safeguard fertility. As copy-number expansion is a recurrent feature of diverse selfish genes across the tree of life, we envision that augmenting the defense capacity to quantitatively match selfish genes is a repeatedly employed defense strategy in evolution.

Keywords: Stellate; genetic innovation; intragenomic conflict; piRNA; zinc finger protein.

MeSH terms

  • Animals
  • Drosophila Proteins* / genetics
  • Drosophila Proteins* / metabolism
  • Drosophila melanogaster* / genetics
  • Genome, Insect
  • Meiosis* / genetics
  • RNA Interference
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Drosophila Proteins
  • RNA, Small Interfering
  • Transcription Factors