The Role of Lipids in Atherosclerosis: Focus on Molecular Biology Mechanisms and Therapeutic Approaches

Curr Med Chem. 2025 Jan 3. doi: 10.2174/0109298673348217241119063941. Online ahead of print.

Abstract

Atherosclerosis is a complex vascular disease characterized by the buildup of lipids, inflammatory cells and fibrous components in arterial walls leading to plaque formation and potential thrombotic events like myocardial infarction and strokes. Recently, there has been research on the roles of various types of lipids such as low-density lipoprotein (LDL) cholesterol, oxidized LDL (oxLDL) cholesterol and small dense LDL (sdLDL) in the onset and progression of atherosclerosis. These lipoproteins contribute to dysfunction and inflammation processes that play a role in the development and instability of plaques. Moreover, certain enzymes and proteins linked to lipids have been associated with atherosclerosis highlighting the complex interplay between lipid metabolism and inflammation in this disease. This review delves into the mechanisms behind atherosclerosis focusing on the involvement of lipids, enzymes and regulatory proteins. Additionally, it will also discuss present treatments as well as new therapeutic approaches that target these molecular mechanisms with the goal of advancing our knowledge about atherosclerosis and guiding future treatment strategies.

Keywords: Atherosclerosis; LDL; arterial plaque; cardiovascular disease; inflammatory pathways.; lipid metabolism.