The process of discovering new drugs related to microbes through traditional biological methods is lengthy and costly. In response to these issues, a new computational model (NRGCNMDA) is proposed to predict microbe-drug associations. First, Node2vec is used to extract potential associations between microorganisms and drugs, and a heterogeneous network of microbes and drugs is constructed. Then, a Graph Convolutional Network incorporating a fusion residual network mechanism (REGCN) is utilized to learn meaningful high-order similarity features. In addition, conditional random fields (CRF) are applied to ensure that microbes and drugs have similar feature embeddings. Finally, unobserved microbe-drug associations are scored based on combined embeddings. The experimental findings demonstrate that the NRGCNMDA approach outperforms several existing deep learning methods, and its AUC and AUPR values are 95.16% and 93.02%, respectively. The case study demonstrates that NRGCNMDA accurately predicts drugs associated with Enterococcus faecalis and Listeria monocytogenes, as well as microbes associated with ibuprofen and tetracycline.
Keywords: Conditional random field; Graph convolutional network; Microbe-drug association; Node2vec; Residual network mechanism.
© 2024. International Association of Scientists in the Interdisciplinary Areas.