Metabolic alterations are commonly associated with various cancers and are recognized as contributing factors to cancer progression, invasion, and metastasis. Drug repurposing, a strategy in drug discovery, utilizes existing knowledge to recommend established drugs for new indications based on clinical data or biological evidence. This approach is considered a less risky alternative to traditional drug development. Metformin, a biguanide, is a product of Galega officinalis (French lilac) primarily prescribed for managing type 2 diabetes, is recognized for its ability to reduce hepatic glucose production and enhance insulin sensitivity, particularly in peripheral tissues such as muscle. It also improves glucose uptake and utilization while decreasing intestinal glucose absorption. Statins, first isolated from the fungus Penicillium citrinum is another class of medication mainly used to lower cholesterol levels in individuals at risk for cardiovascular diseases, work by inhibiting the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which is essential for cholesterol biosynthesis in the liver. Metformin is frequently used in conjunction with statins to investigate their potential synergistic effects. Combination of metformin and simvastatin has gathered much attention in cancer research because of its potential advantages for cancer prevention and treatment. In this review, we analyze the effects of metformin and simvastatin, both individually and in combination, on key cancer hallmarks, and how this combination affects the expression of biomolecules and associated signaling pathways. We also summarize preclinical research, including clinical trials, on the efficacy, safety, and potential applications of repurposing metformin and simvastatin for cancer therapy.
Keywords: cancer; cholesterol; drug repositioning; fatty acids; metabolic syndrome; metformin; simvastatin.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.