Astroglia are integral to brain development and the emergence of neurodevelopmental disorders. However, studying the pathophysiology of human astroglia using brain organoid models has been hindered by inefficient astrogliogenesis. In this study, we introduce a robust method for generating astroglia-enriched organoids through BMP4 treatment during the neural differentiation phase of organoid development. Our RNA sequencing analysis reveals that astroglia developed within these organoids exhibit advanced developmental characteristics and enhanced synaptic functions compared to those grown under traditional two-dimensional conditions, particularly highlighted by increased neurexin (NRXN)-neuroligin (NLGN) signaling. Cell adhesion molecules, such as NRXN and NLGN, are essential in regulating interactions between astroglia and neurons. We further discovered that brain organoids derived from human embryonic stem cells (hESCs) harboring the autism-associated NLGN3 R451C mutation exhibit increased astrogliogenesis. Notably, the NLGN3 R451C astroglia demonstrate enhanced branching, indicating a more intricate morphology. Interestingly, our RNA sequencing data suggest that these mutant astroglia significantly upregulate pathways that support neural functions when compared to isogenic wild-type astroglia. Our findings establish a novel astroglia-enriched organoid model, offering a valuable platform for probing the roles of human astroglia in brain development and related disorders.
Keywords: Astrogliogenesis; Autism; Brain organoid; Human embryonic stem cells; Human induced pluripotent stem cells; Neurexin; Neuroligin; Neuroligin-3 R451C.
© 2025. The Author(s).