The structural plasticity of proteins at the molecular level is largely dictated by backbone torsion angles, which play a critical role in ligand recognition and binding. To establish the anion-induced cooperative arrangement of the main-chain (mc) torsion, herein, we analyzed a set of naturally occurring CαNN motifs as "static models" for their anion-binding competence through docking and molecular dynamics simulations and decoded its torsion angle influenced mc-driven anion recognition potential. By comparing a pool of 20 distinct sets of CαNN motif with identical sequences in their "anion bound/present, aP" and "anion free/absent, aA" versions, we could discern that there exists a positive correlation between the "difference of anion residence time (ΔRT)" and "difference among the main-chain torsion angle" of the aP and aA population. Notably, the anion interaction with CαNNs is locally energetically favorable even in a context-free non-proteinaceous environment and if the difference of the mc-torsion angles involving the Cα-1, N0, N1 residues for a population is higher between the aP and aA state, the difference among the ligand RT is also greater. At the atomistic level, the accommodation of anion is highly synergistic and cooperatively sways the interacting mc-atom torsions. By comparing the clustering of H-bonding patterns, the free energy of binding, and RT in both states, we provide evidence that to establish favorable thermodynamics and kinetics of ligand accommodation in these short structural motifs, proper reorientation of local-mc governed by torsions is a prerequisite. Our findings position the CαNN motif as a promising scaffold for peptidomimetic design and emphasize the critical role of loop region dynamics in protein structure-function relationships.
Keywords: CαNN motif; H‐bonding; ligand recognition; molecular dynamics simulations; structural motif; torsion angle.
© 2025 Wiley Periodicals LLC.