The production of hydrogen peroxide (H2O2) through two-electron oxygen reduction reaction (2e- ORR) has emerged as a more environmentally friendly alternative to the traditional anthraquinone method. Although oxidized carbon catalysts have intensive developed due to their high selectivity and activity, the yield and conversion rate of H2O2 under high overpotential still limited. The produced H2O2 was rapidly consumed by the increased intensity of H2O2 reduction, which could ascribe to decomposition of peroxide radicals under high voltage in the carbon catalyst. To overcome this issue, a B doped carbon have been developed to catalyze 2e- ORR with high efficient through suppressing H2O2 decomposition at high potential. Thus, thermal reducing of oxygen containing groups (OCGs) on graphite could construct defects and vacancies, which in situ convert to B-Cx subunits on the edge of graphene sheets. The introduction of B-Cx effectively prevented the decomposition of the *O-O bond and provided suitable adsorption capacity for *OOH, achieving excellent selectivity for the 2e- ORR across a wide voltage range. Finally, a remarkable H2O2 yield of 7.91 mmol cm-2 h-1 was delivered at an industrial current density of 600 mA cm-2, which could provide "green" pathway for scale-upable synthesis H2O2.
Keywords: Electro-catalysis, Hydrogen peroxide, 2e- oxygen reduction reaction, Boron doped carbon.
© 2025 Wiley‐VCH GmbH.