Exploring B7-H4's role in prostate cancer dormancy post-androgen deprivation therapy: extracellular matrix interactions and therapeutic opportunities

Mol Cancer Res. 2025 Jan 7. doi: 10.1158/1541-7786.MCR-24-0958. Online ahead of print.

Abstract

Prostate cancer (PCa) is mainly managed with androgen deprivation therapy (ADT), but this often leads to a dormant state and subsequent relapse as lethal castration-resistant prostate cancer (CRPC). Using our unique PCa patient-derived xenograft (PDX) dormancy models, we investigated this critical dormant phase and discovered a selective increase in B7-H4 expression during the dormancy period following mouse host castration. This finding is supported by observations in clinical specimens of PCa patients treated with ADT. Differential expression analyses revealed the enrichment of extracellular matrix (ECM)-cell interaction pathways in B7-H4-positive cells. Functional assays demonstrated a crucial role of B7-H4 in maintaining dormancy within the ECM niche. Specifically, B7-H4 expression in LNCaP cells reduced proliferation within dormant ECM in vitro and significantly delayed relapse in castrated hosts in vivo. These results shed light on the dynamic regulation of B7-H4 during PCa dormancy and underscore its potential as a therapeutic target for preventing CRPC relapse. Implications: Our study identified membranous B7-H4 expression during ADT-induced dormancy, highlighting its potential as a therapeutic target for managing dormant prostate cancer and preventing fatal CRPC relapse.