Fe-N-C catalysts, with a planar D4h symmetric FeN4 structure, show promising as noble metal-free oxygen reduction reaction catalysts. Nonetheless, the highly symmetric structure restricts the effective manipulation of its geometric and electronic structures, impeding further enhancements in oxygen reduction reaction performance. Here, a high proportion of asymmetric edge-carbon was successfully introduced into Fe-N-C catalysts through morphology engineering, enabling the precise modulation of the FeN4 active site. Electrochemical experimental results demonstrate that FeN4@porous carbon (FeN4@PC), featuring enriched asymmetric edge-FeN4 active sites, exhibits higher acidic oxygen reduction reaction catalytic activity compared to FeN4@flaky carbon (FeN4@FC), where symmetric FeN4 is primarily distributed within the basal-plane. Synchrotron X-ray absorption spectra, X-ray emission spectra, and theoretical calculations indicate that the enhanced oxygen reduction reaction catalytic activity of FeN4@PC is attributed to the higher oxidation state of Fe species in the edge structure of FeN4@PC. This finding paves the way for controlling the local geometric and electronic structures of single-atom active sites, leading to the development of novel and efficient Fe-N-C catalysts.
Keywords: acidic ORR; geometry and electronic structure; in-situ characterization; morphological engineering; symmetry-broken FeN4 site.
© 2025 Wiley‐VCH GmbH.