Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine. To evaluate the effect on the ileum, we histologically analyzed the inflammatory and recovery phases in DSS model mice, and 40 kDa FITC-dextran was used to investigate barrier function. In the inflammatory phase, histological damage was insignificant. However, expanded crypts, hypertrophic goblet and Paneth cells, increased mucus production and secretion were observed. The cellular morphology was restored to that of the control in the recovery phase. According to in situ hybridization and lectin histochemistry, the expression of intestinal stem cell markers, secretory cell differentiation factors, and glycosylation of secretory granules in Paneth cells differed in the DSS model. DSS-treatment did not influence the barrier function in the ileum, and FITC-dextran did not diffuse via the paracellular pathway into the mucosa. However, cells incorporating FITC appeared even under normal conditions. The number of FITC-positive Paneth cells was lower in the DSS group than the control group. Our results showed morphological and functional alterations in ileal epithelial cells, especially secretory cells, in the DSS colitis model.
Keywords: DSS induced colitis; Paneth cell; goblet cell; ileum.
2024 The Japan Society of Histochemistry and Cytochemistry.