Adapting single-walled carbon nanotube-based thin-film transistors to flexible substrates with electrolyte-gated configurations using a versatile tri-layer polymer dielectric

Nanoscale Adv. 2024 Dec 23. doi: 10.1039/d4na01007h. Online ahead of print.

Abstract

Flexibility has been a key selling point in the development of carbon-based electronics and sensors with the promise of further development into wearable devices. Semiconducting single-walled carbon nanotubes (SWNTs) lend themselves well to applications requiring flexibility while achieving high-performance. Our previous work has demonstrated a tri-layer polymer dielectric composed of poly(lactic acid) (PLA), poly(vinyl alcohol) with cellulose nanocrystals (PVAc), and toluene diisocyanate-terminated poly(caprolactone) (TPCL), yielding an environmentally benign and solution-processable n-type thin-film transistor (TFT). Despite the potential for fabrication on flexible substrates, these devices were only characterized on rigid substrates. We present herein the fabrication of these TFTs on Kapton® substrates and a progression of the devices' n- and p-type operation over 7 days, demonstrating continuous loss of the n-type performance and relative stability of the p-type performance after 3 days in ambient air. The tri-layer dielectric is then applied in an electrolyte-gated SWNT field-effect transistor (EG-SWNT-FET) architecture, shielding the SWNTs from the electrolyte and allowing for width-normalised g m values of 0.0563 ± 0.0263 μS μm-1 and I ON/OFF ratios of 103-104 using de-ionized (DI) water as the electrolyte. Finally, as a proof of concept, the device was used to detect α-synuclein, a neuronal protein whose aggregation is associated with Parkinson's disease, in DI water through the immobilization of target specific aptamer molecules on the polymer layer covering the gate electrode.