The Cayo Santiago rhesus macaque colony is a renowned primate population that has experienced significant natural and anthropogenic ecological variation in their 85-year history. Demographic and familial information is also tracked and collated for the majority of monkeys. Thus, the health history of rhesus macaques at Cayo Santiago should reflect the impacts of both environmental and genetic factors. In this study, we utilized a sample of skeletal remains comprised of 2787 individuals (1571 females, 1091 males), born between 1938 and 2017 from the derived skeletal collection of the primate colony to assess variation in survivorship, pathology, bone mineral density (BMD), and dental eruption status, in the context of hurricane impacts, nutritional fluctuations, and matriline genealogy. Results demonstrated that rhesus macaques at Cayo Santiago exhibit a range of skeletal pathologies that encompass biomedical and archaeological significance, multiple etiologies, severities, locations, and types, in addition to a secular trend of declining BMD that is hypothesized to reflect decreasing physical activity levels under increasing population densities. Specifically, hurricane impacts were found to increase the rate of systemic disease, decrease BMD in young adults, and delay eruption of the primary dentition. Certain matrilines exhibited heightened levels of systemic disease at early ages while others exhibited greater rates of congenital disease. Early-life adversity, through the experience of major hurricanes, may enhance inflammatory pathways, heightening the risk of disease and accelerating the aging process leading to reduced BMD. Such impacts may underly greater levels of observed infection post-hurricane through intensification of pathogen transmission and disease rates brought on by hurricane-adaptive social strategies that favor closer proximity. Familial susceptibility to disease indicates heritable host genetic factors are likely influencing disease patterning in the population. A cluster of congenital diseases may most convincingly illustrate this, or alternatively reflects low levels of genetic diversity in the population.
Keywords: bone mineral density; familial susceptibility; hurricanes; natural disasters; osteopathology; osteoporosis; resilience; secular trend.
© 2025 Wiley Periodicals LLC.