CO2 and Temperature Induced Switching of a Flexible Metal-Organic Framework with Surface-Mounted Nanoparticles

Small. 2025 Jan 7:e2408137. doi: 10.1002/smll.202408137. Online ahead of print.

Abstract

Within the material family of metal-organic frameworks (MOFs) the subclass of flexible MOFs (flexMOFs) has attracted great attention, showing structural flexibility as a response to external stimuli such as guest adsorption, temperature, and pressure. Hybrid composites like nanoparticle (NP) loaded flexible MOFs, which stand to potentially combine advantageous properties of both are yet largely unexplored. Here the synthesis of flexMOFs with surface mounted nanoparticles, e. g. NP@Zn2(BME-bdc)2dabco composites (NP = Pt and SiO2 nanoparticles, BME-bdc2- = 2,5-bismethoxyethoxy-1,4-benzenedicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane) is reported, studying the impact of nanoparticles on the stimulus-responsiveness of a flexMOF. It is shown that CO2 physisorption triggered flexibility of the MOF is retained and reversible for all NP@flexMOF composites. Additionally, it is observed that NPs stabilize the large pore state of the MOF, slightly increasing and shifting the switching pressure window. This effect is also observed during temperature-induced switching but Pt@flexMOF composites partially lose long-range order during the reversion to their narrow pore state, while attached SiO2 NPs allow for a fully reversible transition. These findings suggest that the total exerted material strain triggering the switching is heavily dependent on NP size and the applied stimulus and that guest-induced switchability can be fully realized in NP@flexMOF hybrid materials.

Keywords: composites; flexible MOFs; metal–organic frameworks; nanoparticles.