In vitro time-kill curve (TKC) experiments are an important part of the pharmacokinetic- pharmacodynamic (PKPD) characterisation of antibiotics. Traditional TKCs use Mueller-Hinton broth (MHB), which lacks specific plasma components that could potentially influence the bacterial growth and killing dynamics, and affect translation to in vivo. This study aimed to evaluate the impact of plasma on the PKPD characterisation of two antibiotics; cefazolin and clindamycin. TKC experiments were conducted in pure MHB, and MHB spiked with 20% and 70% human plasma. Plasma protein binding (PPB) data were available, and a linear model described cefazolin's PPB, while clindamycin's PPB was best described by a second-order polynomial model. PKPD models were developed based on pure MHB and described drug effects using an Emax model, with consideration of adaptive resistance for cefazolin. The observed bacterial growth and killing in the plasma-spiked MHB TKC data was insufficiently described when applying the developed PPB and PKPD models. In plasma spiked MHB, a growth delay was observed, estimated to 0.25 h (20% plasma), or 2.90 h (70% plasma) for cefazolin, and 0.64 h (20% plasma), or 1.40 h (70% plasma) for clindamycin. Furthermore, the drug effect was higher than expected in plasma-spiked MHB, with bacterial stasis and/or killing at unbound concentrations below MIC, necessitating drug effect parameter scaling (C50 for cefazolin, Hill coefficient for clindamycin). The findings highlight significant differences in bacterial growth and killing dynamics between pure MHB and plasma-spiked MHB and exemplify how PKPD modelling may be used to improve the translation of in vitro results.
Keywords: Pharmacokinetics-pharmacodynamics (PKPD); Plasma protein binding (PPB); Time-kill curve (TKC).
Copyright © 2025. Published by Elsevier Ltd.