Integrating deformable CNN and attention mechanism into multi-scale graph neural network for few-shot image classification

Sci Rep. 2025 Jan 8;15(1):1306. doi: 10.1038/s41598-025-85467-4.

Abstract

Graph neural networks have excellent performance and powerful representation capabilities, and have been widely used to handle Few-shot image classification problems. The feature extraction module of graph neural networks has always been designed as a fixed convolutional neural network (CNN), but due to the intrinsic properties of convolution operations, its receiving domain is limited. This method has limitations in capturing global feature information and easily ignores key feature information of the image. In order to extract comprehensive and critical feature information, a new CA-MFE algorithm is proposed. The algorithm first utilizes different convolution kernels in CNN to extract multi-scale local feature information, and then based on the global feature extraction ability of attention mechanism, parallel processing of channel and spatial attention mechanism is used to extract multidimensional global feature information. This paper provides a comprehensive performance evaluation of the new model on both mini-ImageNet and tiered ImageNet datasets. Compared with the benchmark model, the classification accuracy has increased by 1.07% and 1.33% respectively; In the 5-way 5-shot task, the classification accuracy of the mini-ImageNet dataset was improved by 11.41%, 7.42%, and 5.38% compared to GNN, TPN, and dynamic models, respectively. The experimental results show that compared with the benchmark model and several representative Few-shot classification algorithm models, the new CA-MFE model has significant superior performance in processing few-shot classification data.