Janus graphene nanoribbons with localized states on a single zigzag edge

Nature. 2025 Jan 8. doi: 10.1038/s41586-024-08296-x. Online ahead of print.

Abstract

Topological design of π electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases1-10. Symmetric ZGNRs typically show antiferromagnetically coupled spin-ordered edge states1,2. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a class of ferromagnetic quantum spin chains11, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the one-dimensional limit3,12, but also establishes a long-sought-after carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics1-3,9,13. Here we report a general approach for designing and fabricating such ferromagnetic GNRs in the form of Janus GNRs (JGNRs) with two distinct edge configurations. Guided by Lieb's theorem and topological classification theory14-16, we devised two JGNRs by asymmetrically introducing a topological defect array of benzene motifs to one zigzag edge, while keeping the opposing zigzag edge unchanged. This breaks the structural symmetry and creates a sublattice imbalance within each unit cell, initiating a spin-symmetry breaking. Three Z-shaped precursors are designed to fabricate one parent ZGNR and two JGNRs with an optimal lattice spacing of the defect array for a complete quench of the magnetic edge states at the 'defective' edge. Characterization by scanning probe microscopy and spectroscopy and first-principles density functional theory confirms the successful fabrication of JGNRs with a ferromagnetic ground-state localized along the pristine zigzag edge.