Stargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.Gly1961Glu). We optimized ABCA4 base editing in human models, including retinal organoids, induced pluripotent stem cell-derived retinal pigment epithelial (RPE) cells, as well as adult human retinal explants and RPE/choroid explants in vitro. The resulting gene therapy vectors achieved high levels of gene correction in mutation-carrying mice and in female nonhuman primates, with average editing of 75% of cones and 87% of RPE cells in vivo, which has the potential to translate to a clinical benefit. No off-target editing was detectable in human retinal explants and RPE/choroid explants. The high editing rates in primates show promise for efficient gene editing in other ocular diseases that are targetable by base editing.
© 2025. The Author(s).